PLB-HAC: Dynamic Load-Balancing for Heterogeneous
Accelerator Clusters

Gottingen, Germany

Luis Sant’Ana! Daniel Cordeiro> Raphael Y. de Camargo'

raphael.camargo@Qufabc.edu.br
1Universidade Federal do ABC, Brazil
2Universidade de S3o Paulo, Brazil

W) euro-PAR M apESP

C APES

UFABC

Introduction
Proposed Algorithm

Experimental Results

UFABC 2

Introduction

Heterogeneous Clusters

amioa TESLA

e Many types of processing units exist in current clusters

e x86 CPUs, RISC CPUs, FPGAs, Many-cores and GPUs
e Heterogeneity in supercomputers and custom HPC platforms is becoming common
e For clusters using commodity machines, the heterogeneity level is even higher

e A new generation of hardware is launched every couple of years
e Researchers want to use all existing machines to increase the availability of resources

UFABC

Load Balancing

Original data | |

Partitioned | | | | |
data

Machine 1 2 3 4

e The problem with heterogeneous machines is on how to distribute computation
among processing units (PUs)

e Load-balancing mechanism for all kinds of applications is not feasible

e We focus on data-parallel applications

e Data-parallel applications can have its data divided in smaller blocks
e The blocks are processed independently in parallel
o) e Results are merged at the end

UFABC 4

Approaches for Load-Balancing in Heterogeneous Clusters

e Some simple heuristics to distribute data
e Master-worker architectures and work stealing
e May result in suboptimal distributions at the end of simulations
e Prevents optimizations such as data prefetching
e Distribute data using simple criteria, such as peak performance (in GFLOPS)
e s ineffective, as performance on each architecture is application dependent
e The relationship between input size and execution time is frequently non-linear
e Use more elaborate load-balancing algorithms
e Are normally specific for certain classes of applications and cause a higher overhead
e Compensate with better task distribution and potentially smaller execution time

UFABC 5

Existing approaches for Data-Parallel Applications

e Divide data into small chunks and profile their execution time in each PU
e Use simple relative processing power values

e Belviranli et al. (2013) — Heterogeneous Dynamic Self-Scheduler (HDSS) for GPUs
Initial phase, where blocks of different sizes are sent to GPUs
A RP (relative performance) value is assessed for each GPU

e Kaleen et al. (2014) — different processing rates Gr and Cr for GPUs and CPUs

e Generate more detailed performance profiles of tasks on each PU type
e de Camargo et al. (2015) — Use of a execution time vs block size curve for each GPU

e Zhong et al. (2012) — workload is split using an Functional Performance Model,
but which requires prior information about the problem

e Existing work focus mainly on GPUs
e Generate static distributions, preventing adaptations to changes

e They also contain multiple synchronization steps that reduces performance

UFABC 6

Proposed Algorithm

Cluster

(5) cPU CcPU cPU CcPU
Returns execution times
GPU GPU MIC MIC
(4) Returns (3)
execution) Send data

(1)

(2)

results

blocks to PUs

Send block sizes

Model Evaluation

PLB-HAC

Assigned to PUs ‘

Application

e Create performance model for each PU — determine block size distribution

e Dispatching of blocks for execution and results collection by the application

e Analysis of execution times by PLB-HAC to update the performance models

&

UFABC

Initial Performance Modeling

Execution
Relative block sizes time

[1af1]z] .
[2 1.8 1.a]1] for«processing units - .

Input size

Application for which we have no information of execution time behavior

Devise a performance model for each PU based on execution time measurements

First step: sends a block of size x;,j; to each unit

Next step: double block size to fastest unit

e Other units receive blocks size proportional to their speed
e Units should complete execution approximately at the same time

With two points, an initial model is devised by fitting a line to the points

UFABC 8

Continuous Performance Modeling

e More measurements obtained — better performance models for the execution
time on the different PUs

e Use least-squares to find the best curve fit using:

Fplx] = a1fi(x) + a2fa(x) + ... + anfa(x)

2 3 X

where f;(x) is one function of the set Inx, x, x*, x>, €%, x - €

,and x-Inx
Should work for any kind of Processing Unit

e For modeling the time spent transmitting the data, we use
Gp[x] = aix + a

Captures time required to transfer data to different kinds of PUs

e The total execution time is given by:
Ep[x] = Fplx] + Gplx]

UFABC 9

Examples of Curve Fitting

GRN (CPU) MM (CPU)
125
. 100~
§=0.0233+1.11x10 % x +1.23x10"°x? R?=0.96 §=-0.00432+8.04x100x +2.64x10° x> R?=1
100
075~
075
) @
“é E 0.50
F oso F
025-
025
000 000~
0e+00 20407 set07 6e+07 0et00 20407 aeto7 6et07
Block Size(KB) Block Size(KB)
GRN (GPU) MM (GPU)
a o ¢
§=0.000689+6.75x107° x +2.89 x107° x* R?=0.99 §=0.00946+8.68x10°x +3.3x107° x? R?=0.91
09
10
T o @
g g
E E
E £
05-
03~
00~ 00-
0eto0 6eto7 oet00 107 6et07

26407 4evo7 2e407 4e40;
Block Size(KB) Block Size(KB)

A Execution times and performance models using a CPU (Top) and GPU (Bottom) for the

U%ALE;C gene regulatory network (GRN) and matrix multiplication (MM) applications. 0

Assignment of Block Sizes

e Objective: divide data chunks of k bytes, normalized to 1, among the PUs
e Determine the set X of block sizes xg for each processor

X:{xgER:[O,I]\ZH:ngl}

e Same execution time Ex(xx) on each processor k
Ei(x1) = Bx(x2) = - -+ = En(xn)
To find X, we need to solve the following set of equations:

Ei(x1) = F1(x1) + Gi(x1)
Ex(x2) = Fa(x2) 4+ Ga(x2)

En(xn) = Fn(xn) + Gn(xn)

Apply an interior point line search filter method

UFABC 11

Application Execution

Cluster

(5)

Returns execution times

CPU

MIC

(4) Returns
execution Send data
results blocks to PUs

1)
(2)
Send block sizes
Model Evaluation
Assigned to PUs

PLB-HAC

Application

e The scheduler sends a list of blocks sizes x, for the application
e xg is a floating-point number, which is rounded to the closest valid block size
e The application dispatches blocks of these sizes to the processing units g.
e When a PU finishes executing a task, it returns the results to the application and the
execution times to PLB-HAC.

UFABC

Execution Control and Rebalancing (1/2)

Proportional distribution Gap filling block

A
A |1||i| M s | 512 [sa M 51 | 3 |i .
| 4 IMI a1 [a1] s IMF‘
[T =T s T i ...
D ,T"?|1.5 [+5s | 15 | 13 JM
I

time

\J

\J

\

\J

synchronize reduction block size

MGenerate the model Block size

e Initial phase — PLB-HAC creates an initial model which is used to determine task sizes
e The remaining of execution is divided in virtual steps
e Each PU receives a block size according to its performance model
e Performance model is re-evaluated after the end of the virtual step
e This monitoring allows the algorithm to respond to changes in the execution environment
Q
O
UFABC 13

Execution Control and Rebalancing (2/2)

Proportional distribution Gap filling block

A
A |1|| 2 |M‘| RN ERE |i .
S] B I B B,)

S | S| []

S 5 BT M e e e

D | 1 ||1.1 [15 | 15 [[15 | 13 I .
: time 1 7
synchronize reduction block size

MGenerate the model Block size

e If the execution time is far from the expected value, a gap filling block is executed

e The objective is to maintain a virtual synchronization between tasks
e Threshold is sufficiently large to permit the efficient use of PU resources

e A final phase where blocks are smaller to reduce the impact of sub-optimal distributions

e Execution is similar, but block sizes are smaller to reduce the effects of unbalances

UFABC 14

Experimental Results

Implementation Using StarPU

e StarPU — a task-based programming library for hybrid architectures
e Runtime layer that manages the execution of tasks and data transferring between
processing units
e Support for CPU, GPU, and Xeon Phi — implementations using codelets
e Offers an API that allows the implementation of new scheduling policies
e Default scheduling strategy is the greedy one
e Implemented PLB-HAC over the StarPU framework
e Also implemented the HDSS algorithm for comparison
e Determines a RP (Relative Power) value for each GPU, which is use to select block

sizes

UFABC

Applications

e We ported three applications to the StarPU Framework
e GPU, CPU and Xeon Phi implementations
e Matrix Multiplication
e We used the optimized version from the CUBLAS 4.0 library
e Computational complexity: O(n®) for an n x n matrix.
e Gene Regulatory Network (GRN) inference
e Exhaustive search of gene subset with cardinality k that best predict a target gene
e Computational complexity: O(n*), where n is the number of genes.
e K-means clustering algorithm

e Partitions n d-dimensional observations into k clusters
e Computational complexity: O(n?*+1)

UFABC 16

Machine Configurations

Table 1: Machine configurations

Machines Description
PU type Model Core count Cache/Throughput | Memory
A CPU Intel i7 - 5930K 6 cores @ 3.5 GHz 15 MB cache 32 GB
GPU Quadro K5200 2304 cores 192 GB/s 8 GB
CPU Intel i7 - 5930K 6 cores @ 3.5 GHz 15 MB cache 32 GB
B GPU GTX 970 1667 cores 224 GB/s 4 GB
Xeon Phi | 3120 series 57 cores 240 GB/s 6 GB
C CPU Intel Xeon E-2620 | 6 cores @ 2.10 GHz | 15 MB cache 32 GB
GPU Quadro K620 384 cores 29 GB/s 2 GB
D CPU Intel i7-4930k 6 cores @ 3.40 GHz | 12 MB cache 32 GB
GPU GPU Titan 2688 cores 288.4 GB/s 6 GB
CPU Intel Xeon E-2620 | 6 cores @ 2.10 GHz | 15 MB cache 32 GB
E GPU Quadro K620 384 cores 29 GB/s 2 GB
Xeon Phi | 3120 series 57 cores 240 GB/s 6 GB

Setups: 1 machine [A], 3 machines [A, B, C], and 5 machines[A, B, C, D, E]

UFABC

17

Speedup vs Optimal distribution

MM GRN K-Means
1 <+ g+ PLB-HAG
0. I T + = dh=+ PLB-HeC
Greedy
o —#—HDSS
0. s = Optimum

o o o

O, . 08

07! 0.74
06 08 1 12 14

4 5
6

Speedup Speedup Speedup

o o o

6

Matrix Size"~ Number of Genes Dataset Size"

SOUIUOBIN G SOUIUOBIN € QUIUJBI |

e Matrix Multiplication (MM), Gene Regulatory Network (GRN) and K-Means applications
(?.) e PLB-HAC was mostly within 10% of the optimal and better than other algorithms

UFABC 18

Block Size

GRN K-Means

[MMachine A

Size Ratio

=]

Size Ratio

Size Ratio

CPU GPU Xeon Phi

)

Xeon Phi CPU GPU Xeon Phi
Number of Genes Dataset Size

CPU GPU
Matrix Size

e The block size ratio distributed to each PU in the five machines (A to E) for:
Optimal (O), HDSS (H) and PLB-HAC (P) distributions
CPU, GPU and Xeon Phi accelerators.
e The distribution of blocks sizes generated by PLB-HAC was very similar to the optimal.

e HDSS had a larger allocation to CPUs and smaller to Xeon Phi

UFABC

UFABC

B

@

Idle Time (%)

CPU GPU Xeon Phi CPU GPU Xeon Phi
4096 elements Matrix Size 65536 elements

Percentage of idle time for each PU class (CPU, GPU, and Xeon Phi) in five machines for:

Idle Time (%)

o

10

60000 elements

GPU Xeon Phi CPU GPU Xeon Phi
140000 elements

Number of Genes

HDSS (H) and PLB-HAC (P) distributions

HDSS had much higher idle times, which occurred mostly in the initial phase, during

model construction

Two different input sizes for the applications

Idle Time (%)

K-Means

CPU GPU Xeon Phi
1000000 elements

CPU GPU Xeon Phi
5000000 elements
Dataset Size

20

Adaptability

Adaptability s Adaptability
8000 142 seconds ‘ I I 142 seconds ‘ I ._._.;o_q I ':2;3 wah process
2500 8000 \ v | Ifecrua
. 2500 1 . |rkcPuB
3 2000
@ 0. g 000, o 00, = 2000 \
& 1500[B & 1500 L 90 0-0-0-0-0-¢ \
s 5
& 1000 : @ 1000
s00k "i—-% 'hq—-(—-l—'h-ih.*-l—-lgq__'_“_-:/;*' 500 £ S S S S
s | | | | | e | | | I T s
0 50 100 150 200 250 0 0 50 100 150 200 250 300 350
Time (s) Time ()

e Evolution of the block size distribution for two machines (A and B) executing the Matrix
Multiplication application in the presence of a competing process

(Left) GRN application is started at GPU A at instant 142s, denoted by the vertical line.
(Right) A resource intensive rendering application is started at GPU A at 142s

UFABC 21

Conclusions

e PLB-HAC: Profile-based Load-Balancing for Heterogeneous Accelerator Clusters

Online performance modeling and precise block size selection by solving a
non-linear system of equations

Improved execution time, specially with more heterogeneous clusters

Future work:

e Fault-tolerance: execution could continue, with a new block distribution using the
performance model

e Overlapping communication with computations, as application knows in advance the
size of the next blocks to each PU

e Scalability: evaluate the use of applications executing on hundreds of PUs. But most
of them would be similar.

e Multiple kernels: extend to applications that have multiple kernels and execution
phases

UFABC 22

PLB-HAC: Dynamic Load-Balancing for Heterogeneous
Accelerator Clusters

Gottingen, Germany

Luis Sant’Ana! Daniel Cordeiro> Raphael Y. de Camargo'

raphael.camargo@Qufabc.edu.br
1Universidade Federal do ABC, Brazil

2Universidade de S3o Paulo, Brazil

W) euro-PAR M apESP

C APES

UFABC 23

	Introduction
	Proposed Algorithm
	Experimental Results

