
UFABC

PLB-HAC: Dynamic Load-Balancing for Heterogeneous

Accelerator Clusters

Göttingen, Germany

Luis Sant’Ana1 Daniel Cordeiro2 Raphael Y. de Camargo1

raphael.camargo@ufabc.edu.br

1Universidade Federal do ABC, Brazil

2Universidade de São Paulo, Brazil

1

UFABC

Outline

Introduction

Proposed Algorithm

Experimental Results

2

Introduction

UFABC

Heterogeneous Clusters

• Many types of processing units exist in current clusters

• x86 CPUs, RISC CPUs, FPGAs, Many-cores and GPUs

• Heterogeneity in supercomputers and custom HPC platforms is becoming common

• For clusters using commodity machines, the heterogeneity level is even higher

• A new generation of hardware is launched every couple of years

• Researchers want to use all existing machines to increase the availability of resources

3

UFABC

Load Balancing

Original data

Partitioned

data

Machine 1 2 3 4

• The problem with heterogeneous machines is on how to distribute computation

among processing units (PUs)

• Load-balancing mechanism for all kinds of applications is not feasible

• We focus on data-parallel applications

• Data-parallel applications can have its data divided in smaller blocks

• The blocks are processed independently in parallel

• Results are merged at the end

4

UFABC

Approaches for Load-Balancing in Heterogeneous Clusters

• Some simple heuristics to distribute data

• Master-worker architectures and work stealing

• May result in suboptimal distributions at the end of simulations

• Prevents optimizations such as data prefetching

• Distribute data using simple criteria, such as peak performance (in GFLOPS)

• Is ineffective, as performance on each architecture is application dependent

• The relationship between input size and execution time is frequently non-linear

• Use more elaborate load-balancing algorithms

• Are normally specific for certain classes of applications and cause a higher overhead

• Compensate with better task distribution and potentially smaller execution time

5

UFABC

Existing approaches for Data-Parallel Applications

• Divide data into small chunks and profile their execution time in each PU

• Use simple relative processing power values

• Belviranli et al. (2013) → Heterogeneous Dynamic Self-Scheduler (HDSS) for GPUs

Initial phase, where blocks of different sizes are sent to GPUs

A RP (relative performance) value is assessed for each GPU

• Kaleen et al. (2014) → different processing rates Gr and Cr for GPUs and CPUs

• Generate more detailed performance profiles of tasks on each PU type

• de Camargo et al. (2015) → Use of a execution time vs block size curve for each GPU

• Zhong et al. (2012) → workload is split using an Functional Performance Model,

but which requires prior information about the problem

• Existing work focus mainly on GPUs

• Generate static distributions, preventing adaptations to changes

• They also contain multiple synchronization steps that reduces performance

6

Proposed Algorithm

UFABC

Overview

Model Evaluation

CPU CPU CPUCPU

GPU GPU MIC MIC

PLB-HAC

Cluster

Application

Returns execution times

Send block sizes

Assigned to PUs

Returns

execution

results

Send data

blocks to PUs
(1)

(2)

(3)(4)

(5)

• Create performance model for each PU → determine block size distribution

• Dispatching of blocks for execution and results collection by the application

• Analysis of execution times by PLB-HAC to update the performance models

7

UFABC

Initial Performance Modeling

Relative block sizes

for 4 processing units

Execution

time

Input size

• Application for which we have no information of execution time behavior

• Devise a performance model for each PU based on execution time measurements

• First step: sends a block of size xinit to each unit

• Next step: double block size to fastest unit

• Other units receive blocks size proportional to their speed

• Units should complete execution approximately at the same time

• With two points, an initial model is devised by fitting a line to the points

8

UFABC

Continuous Performance Modeling

• More measurements obtained → better performance models for the execution

time on the different PUs

• Use least-squares to find the best curve fit using:

Fp[x] = a1f1(x) + a2f2(x) + ... + anfn(x)

where fi (x) is one function of the set ln x , x , x2, x3, ex , x · ex , and x · ln x
Should work for any kind of Processing Unit

• For modeling the time spent transmitting the data, we use

Gp[x] = a1x + a2

Captures time required to transfer data to different kinds of PUs

• The total execution time is given by:

Ep[x] = Fp[x] + Gp[x]

9

UFABC

Examples of Curve Fitting

ŷ = 0.0233 + 1.11 × 10−8 x + 1.23 × 10−16 x2 R2 = 0.96

0.00

0.25

0.50

0.75

1.00

1.25

0e+00 2e+07 4e+07 6e+07

Block Size(KB)

T
im

e(
s)

GRN (CPU)

ŷ = 0.000689 + 6.75 × 10−10 x + 2.89 × 10−16 x2 R2 = 0.99

0.0

0.3

0.6

0.9

0e+00 2e+07 4e+07 6e+07

Block Size(KB)

T
im

e(
s)

GRN (GPU)

ŷ = − 0.00432 + 8.04 × 10−10 x + 2.64 × 10−16 x2 R2 = 1

0.00

0.25

0.50

0.75

1.00

0e+00 2e+07 4e+07 6e+07

Block Size(KB)

T
im

e(
s)

MM (CPU)

ŷ = 0.00946 + 8.68 × 10−10 x + 3.3 × 10−16 x2 R2 = 0.91

0.0

0.5

1.0

0e+00 2e+07 4e+07 6e+07

Block Size(KB)
T

im
e(

s)

MM (GPU)

Execution times and performance models using a CPU (Top) and GPU (Bottom) for the

gene regulatory network (GRN) and matrix multiplication (MM) applications.
10

UFABC

Assignment of Block Sizes

• Objective: divide data chunks of k bytes, normalized to 1, among the PUs

• Determine the set X of block sizes xg for each processor

X = {xg ∈ R : [0, 1] |
n∑

g=1

xg = 1}

• Same execution time Ek(xk) on each processor k

E1(x1) = E2(x2) = · · · = En(xn)

• To find X , we need to solve the following set of equations:
E1(x1) = F1(x1) + G1(x1)

E2(x2) = F2(x2) + G2(x2)

. . .

En(xn) = Fn(xn) + Gn(xn)

(1)

• Apply an interior point line search filter method

11

UFABC

Application Execution

Model Evaluation

CPU CPU CPUCPU

GPU GPU MIC MIC

PLB-HAC

Cluster

Application

Returns execution times

Send block sizes

Assigned to PUs

Returns

execution

results

Send data

blocks to PUs
(1)

(2)

(3)(4)

(5)

• The scheduler sends a list of blocks sizes xg for the application

• xg is a floating-point number, which is rounded to the closest valid block size

• The application dispatches blocks of these sizes to the processing units g .

• When a PU finishes executing a task, it returns the results to the application and the

execution times to PLB-HAC.

12

UFABC

Execution Control and Rebalancing (1/2)

...

...

...

...

A

B

C

D

synchronize

Generate the model

3.1

Block size

time

Proportional distribution

reduction block size

Gap filling block

• Initial phase → PLB-HAC creates an initial model which is used to determine task sizes

• The remaining of execution is divided in virtual steps

• Each PU receives a block size according to its performance model

• Performance model is re-evaluated after the end of the virtual step

• This monitoring allows the algorithm to respond to changes in the execution environment

13

UFABC

Execution Control and Rebalancing (2/2)

...

...

...

...

A

B

C

D

synchronize

Generate the model

3.1

Block size

time

Proportional distribution

reduction block size

Gap filling block

• If the execution time is far from the expected value, a gap filling block is executed

• The objective is to maintain a virtual synchronization between tasks

• Threshold is sufficiently large to permit the efficient use of PU resources

• A final phase where blocks are smaller to reduce the impact of sub-optimal distributions

• Execution is similar, but block sizes are smaller to reduce the effects of unbalances

14

Experimental Results

UFABC

Implementation Using StarPU

• StarPU → a task-based programming library for hybrid architectures

• Runtime layer that manages the execution of tasks and data transferring between

processing units

• Support for CPU, GPU, and Xeon Phi → implementations using codelets

• Offers an API that allows the implementation of new scheduling policies

• Default scheduling strategy is the greedy one

• Implemented PLB-HAC over the StarPU framework

• Also implemented the HDSS algorithm for comparison

• Determines a RP (Relative Power) value for each GPU, which is use to select block

sizes

15

UFABC

Applications

• We ported three applications to the StarPU Framework

• GPU, CPU and Xeon Phi implementations

• Matrix Multiplication

• We used the optimized version from the CUBLAS 4.0 library

• Computational complexity: O(n3) for an n × n matrix.

• Gene Regulatory Network (GRN) inference

• Exhaustive search of gene subset with cardinality k that best predict a target gene

• Computational complexity: O(nk), where n is the number of genes.

• K-means clustering algorithm

• Partitions n d-dimensional observations into k clusters

• Computational complexity: O(nd·k+1)

16

UFABC

Machine Configurations

Table 1: Machine configurations

Machines
Description

PU type Model Core count Cache/Throughput Memory

A
CPU Intel i7 - 5930K 6 cores @ 3.5 GHz 15 MB cache 32 GB

GPU Quadro K5200 2304 cores 192 GB/s 8 GB

B

CPU Intel i7 - 5930K 6 cores @ 3.5 GHz 15 MB cache 32 GB

GPU GTX 970 1667 cores 224 GB/s 4 GB

Xeon Phi 3120 series 57 cores 240 GB/s 6 GB

C
CPU Intel Xeon E-2620 6 cores @ 2.10 GHz 15 MB cache 32 GB

GPU Quadro K620 384 cores 29 GB/s 2 GB

D
CPU Intel i7-4930k 6 cores @ 3.40 GHz 12 MB cache 32 GB

GPU GPU Titan 2688 cores 288.4 GB/s 6 GB

E

CPU Intel Xeon E-2620 6 cores @ 2.10 GHz 15 MB cache 32 GB

GPU Quadro K620 384 cores 29 GB/s 2 GB

Xeon Phi 3120 series 57 cores 240 GB/s 6 GB

Setups: 1 machine [A], 3 machines [A, B, C], and 5 machines[A, B, C, D, E]

17

UFABC

Speedup vs Optimal distribution

×10
4

2 4 6S
p

e
e

d
u

p

0.7

0.8

0.9

1

MM

×10
4

2 4 6S
p

e
e

d
u

p

0.7

0.8

0.9

1

Matrix Size
×10

4

2 4 6S
p

e
e

d
u

p

0.7

0.8

0.9

1

×10
5

0.6 0.8 1 1.2 1.4
0.7

0.8

0.9

1

GRN

×10
5

0.6 0.8 1 1.2 1.4
0.7

0.8

0.9

1

Number of Genes
×10

5

0.6 0.8 1 1.2 1.4
0.7

0.8

0.9

1

×10
6

1 2 3 4 5
0.7

0.8

0.9

1

1
 M

a
c
h
in

e

K-Means

×10
6

1 2 3 4 5
0.7

0.8

0.9

1
3
 M

a
c
h
in

e
s

Dataset Size
×10

6

1 2 3 4 5
0.7

0.8

0.9

1

5
 M

a
c
h
in

e
s

PLB-HAC

PLB-HeC

Greedy

HDSS

Optimum

• Matrix Multiplication (MM), Gene Regulatory Network (GRN) and K-Means applications

• PLB-HAC was mostly within 10% of the optimal and better than other algorithms

18

UFABC

Block Size

Dataset Size

Id
le

 T
im

e
 (

%
)

0

5

10

15

K-Means

5000000 elements1000000 elements
CPU GPU Xeon Phi CPU GPU Xeon Phi

Machine A

Machine B

Machine C

Machine D

Machine E

Matrix Size

S
iz

e
 R

a
ti
o

0

10

20

30

MM

Number of Genes

S
iz

e
 R

a
ti
o

0

10

20

30

GRN

K-Means

GPU Xeon Phi GPU Xeon PhiCPUCPU

Matrix Size

Dataset Size

S
iz

e
 R

a
ti
o

0

10

20

30

K-Means

Xeon PhiGPUCPU

Machine A

Machine B

Machine C

Machine D

Machine E

H
PO

H PO

H

PO
H PO

H PO

H P
O

H PO H
PO

H PO

(b)

• The block size ratio distributed to each PU in the five machines (A to E) for:

Optimal (O), HDSS (H) and PLB-HAC (P) distributions

CPU, GPU and Xeon Phi accelerators.

• The distribution of blocks sizes generated by PLB-HAC was very similar to the optimal.

• HDSS had a larger allocation to CPUs and smaller to Xeon Phi

19

UFABC

Idleness

Matrix Size

Id
le

 T
im

e
 (

%
)

0

5

10

15

MM

Number of Genes

Id
le

 T
im

e
 (

%
)

0

5

10

15

GRN

K-Means

4096 elements 140000 elements60000 elements

CPU

65536 elements

GPU Xeon Phi CPU GPU Xeon Phi CPU GPU Xeon Phi CPU GPU Xeon Phi

Matrix Size

S
iz

e
 R

a
ti
o

0

10

20

30

MM

GPU Xeon PhiCPU

Optimum

HDSS

PLB-HAC

Optimum

Optimum

HDSS

PLB-HAC

HDSS
PLB-HAC

Matrix Size

Dataset Size

Id
le

 T
im

e
 (

%
)

0

5

10

15

K-Means

5000000 elements1000000 elements
CPU GPU Xeon Phi CPU GPU Xeon Phi

H
H

H

H H

H H H
H

H

H H

H

H

H

H
H

HP
P P

P P P

P

P

P

P P P

P
P

P
P P P

(a)

• Percentage of idle time for each PU class (CPU, GPU, and Xeon Phi) in five machines for:

HDSS (H) and PLB-HAC (P) distributions

Two different input sizes for the applications

• HDSS had much higher idle times, which occurred mostly in the initial phase, during

model construction

20

UFABC

Adaptability

Time (s)

0 50 100 150 200 250 300

Bl
oc

k
Si

ze
 (K

B)

0

500

1000

1500

2000

2500

3000
Adaptability

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

3000

3500
Adaptability

142 seconds 142 seconds
GPU B

CPU A

CPU B

GPU A with process

Bl
oc

k
Si

ze
 (K

B)

Time (s)

• Evolution of the block size distribution for two machines (A and B) executing the Matrix

Multiplication application in the presence of a competing process

(Left) GRN application is started at GPU A at instant 142s, denoted by the vertical line.

(Right) A resource intensive rendering application is started at GPU A at 142s

21

UFABC

Conclusions

• PLB-HAC: Profile-based Load-Balancing for Heterogeneous Accelerator Clusters

• Online performance modeling and precise block size selection by solving a

non-linear system of equations

• Improved execution time, specially with more heterogeneous clusters

• Future work:

• Fault-tolerance: execution could continue, with a new block distribution using the

performance model

• Overlapping communication with computations, as application knows in advance the

size of the next blocks to each PU

• Scalability: evaluate the use of applications executing on hundreds of PUs. But most

of them would be similar.

• Multiple kernels: extend to applications that have multiple kernels and execution

phases

22

UFABC

PLB-HAC: Dynamic Load-Balancing for Heterogeneous

Accelerator Clusters

Göttingen, Germany

Luis Sant’Ana1 Daniel Cordeiro2 Raphael Y. de Camargo1

raphael.camargo@ufabc.edu.br

1Universidade Federal do ABC, Brazil

2Universidade de São Paulo, Brazil

23

	Introduction
	Proposed Algorithm
	Experimental Results

