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Introduction



Heterogeneous Clusters

amioa TESLA

e Many types of processing units exist in current clusters

e x86 CPUs, RISC CPUs, FPGAs, Many-cores and GPUs
e Heterogeneity in supercomputers and custom HPC platforms is becoming common
e For clusters using commodity machines, the heterogeneity level is even higher

e A new generation of hardware is launched every couple of years
e Researchers want to use all existing machines to increase the availability of resources
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Load Balancing
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e The problem with heterogeneous machines is on how to distribute computation
among processing units (PUs)

e Load-balancing mechanism for all kinds of applications is not feasible

e We focus on data-parallel applications

e Data-parallel applications can have its data divided in smaller blocks
e The blocks are processed independently in parallel
o) e Results are merged at the end
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Approaches for Load-Balancing in Heterogeneous Clusters

e Some simple heuristics to distribute data
e Master-worker architectures and work stealing
e May result in suboptimal distributions at the end of simulations
e Prevents optimizations such as data prefetching
e Distribute data using simple criteria, such as peak performance (in GFLOPS)
e s ineffective, as performance on each architecture is application dependent
e The relationship between input size and execution time is frequently non-linear
e Use more elaborate load-balancing algorithms
e Are normally specific for certain classes of applications and cause a higher overhead
e Compensate with better task distribution and potentially smaller execution time
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Existing approaches for Data-Parallel Applications

e Divide data into small chunks and profile their execution time in each PU
e Use simple relative processing power values

e Belviranli et al. (2013) — Heterogeneous Dynamic Self-Scheduler (HDSS) for GPUs
Initial phase, where blocks of different sizes are sent to GPUs
A RP (relative performance) value is assessed for each GPU

e Kaleen et al. (2014) — different processing rates Gr and Cr for GPUs and CPUs

e Generate more detailed performance profiles of tasks on each PU type
e de Camargo et al. (2015) — Use of a execution time vs block size curve for each GPU

e Zhong et al. (2012) — workload is split using an Functional Performance Model,
but which requires prior information about the problem

e Existing work focus mainly on GPUs
e Generate static distributions, preventing adaptations to changes

e They also contain multiple synchronization steps that reduces performance
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Proposed Algorithm
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Application

e Create performance model for each PU — determine block size distribution

e Dispatching of blocks for execution and results collection by the application

e Analysis of execution times by PLB-HAC to update the performance models

&
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Initial Performance Modeling

Execution
Relative block sizes time
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Input size

Application for which we have no information of execution time behavior

Devise a performance model for each PU based on execution time measurements

First step: sends a block of size x;,j; to each unit

Next step: double block size to fastest unit

e Other units receive blocks size proportional to their speed
e Units should complete execution approximately at the same time

With two points, an initial model is devised by fitting a line to the points
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Continuous Performance Modeling

e More measurements obtained — better performance models for the execution
time on the different PUs

e Use least-squares to find the best curve fit using:

Fplx] = a1fi(x) + a2fa(x) + ... + anfa(x)

2 3 X

where f;(x) is one function of the set Inx, x, x*, x>, €%, x - €

,and x-Inx
Should work for any kind of Processing Unit

e For modeling the time spent transmitting the data, we use
Gp[x] = aix + a

Captures time required to transfer data to different kinds of PUs

e The total execution time is given by:
Ep[x] = Fplx] + Gplx]
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Examples of Curve Fitting
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A Execution times and performance models using a CPU (Top) and GPU (Bottom) for the

U%ALE;C gene regulatory network (GRN) and matrix multiplication (MM) applications. 0



Assignment of Block Sizes

e Objective: divide data chunks of k bytes, normalized to 1, among the PUs
e Determine the set X of block sizes xg for each processor

X:{xgER:[O,I]\ZH:ngl}

e Same execution time Ex(xx) on each processor k
Ei(x1) = Bx(x2) = - -+ = En(xn)
To find X, we need to solve the following set of equations:

Ei(x1) = F1(x1) + Gi(x1)
Ex(x2) = Fa(x2) 4+ Ga(x2)

En(xn) = Fn(xn) + Gn(xn)

Apply an interior point line search filter method
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Application Execution

Cluster
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Model Evaluation
Assigned to PUs

PLB-HAC

Application

e The scheduler sends a list of blocks sizes x, for the application
e xg is a floating-point number, which is rounded to the closest valid block size
e The application dispatches blocks of these sizes to the processing units g.
e When a PU finishes executing a task, it returns the results to the application and the
execution times to PLB-HAC.

UFABC



Execution Control and Rebalancing (1/2)

Proportional distribution Gap filling block
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e Initial phase — PLB-HAC creates an initial model which is used to determine task sizes
e The remaining of execution is divided in virtual steps
e Each PU receives a block size according to its performance model
e Performance model is re-evaluated after the end of the virtual step
e This monitoring allows the algorithm to respond to changes in the execution environment
Q
O
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Execution Control and Rebalancing (2/2)

Proportional distribution Gap filling block
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e If the execution time is far from the expected value, a gap filling block is executed

e The objective is to maintain a virtual synchronization between tasks
e Threshold is sufficiently large to permit the efficient use of PU resources

e A final phase where blocks are smaller to reduce the impact of sub-optimal distributions

e Execution is similar, but block sizes are smaller to reduce the effects of unbalances
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Experimental Results




Implementation Using StarPU

e StarPU — a task-based programming library for hybrid architectures
e Runtime layer that manages the execution of tasks and data transferring between
processing units
e Support for CPU, GPU, and Xeon Phi — implementations using codelets
e Offers an API that allows the implementation of new scheduling policies
e Default scheduling strategy is the greedy one
e Implemented PLB-HAC over the StarPU framework
e Also implemented the HDSS algorithm for comparison
e Determines a RP (Relative Power) value for each GPU, which is use to select block

sizes
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Applications

e We ported three applications to the StarPU Framework
e GPU, CPU and Xeon Phi implementations
e Matrix Multiplication
e We used the optimized version from the CUBLAS 4.0 library
e Computational complexity: O(n®) for an n x n matrix.
e Gene Regulatory Network (GRN) inference
e Exhaustive search of gene subset with cardinality k that best predict a target gene
e Computational complexity: O(n*), where n is the number of genes.
e K-means clustering algorithm

e Partitions n d-dimensional observations into k clusters
e Computational complexity: O(n?*+1)
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Machine Configurations

Table 1: Machine configurations

Machines Description
PU type Model Core count Cache/Throughput | Memory
A CPU Intel i7 - 5930K 6 cores @ 3.5 GHz 15 MB cache 32 GB
GPU Quadro K5200 2304 cores 192 GB/s 8 GB
CPU Intel i7 - 5930K 6 cores @ 3.5 GHz 15 MB cache 32 GB
B GPU GTX 970 1667 cores 224 GB/s 4 GB
Xeon Phi | 3120 series 57 cores 240 GB/s 6 GB
C CPU Intel Xeon E-2620 | 6 cores @ 2.10 GHz | 15 MB cache 32 GB
GPU Quadro K620 384 cores 29 GB/s 2 GB
D CPU Intel i7-4930k 6 cores @ 3.40 GHz | 12 MB cache 32 GB
GPU GPU Titan 2688 cores 288.4 GB/s 6 GB
CPU Intel Xeon E-2620 | 6 cores @ 2.10 GHz | 15 MB cache 32 GB
E GPU Quadro K620 384 cores 29 GB/s 2 GB
Xeon Phi | 3120 series 57 cores 240 GB/s 6 GB

Setups: 1 machine [A], 3 machines [A, B, C], and 5 machines[A, B, C, D, E]
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Speedup vs Optimal distribution
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e Matrix Multiplication (MM), Gene Regulatory Network (GRN) and K-Means applications
(?.) e PLB-HAC was mostly within 10% of the optimal and better than other algorithms
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Block Size
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e The block size ratio distributed to each PU in the five machines (A to E) for:
Optimal (O), HDSS (H) and PLB-HAC (P) distributions
CPU, GPU and Xeon Phi accelerators.
e The distribution of blocks sizes generated by PLB-HAC was very similar to the optimal.

e HDSS had a larger allocation to CPUs and smaller to Xeon Phi
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Percentage of idle time for each PU class (CPU, GPU, and Xeon Phi) in five machines for:
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HDSS (H) and PLB-HAC (P) distributions

HDSS had much higher idle times, which occurred mostly in the initial phase, during

model construction

Two different input sizes for the applications
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Adaptability
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e Evolution of the block size distribution for two machines (A and B) executing the Matrix
Multiplication application in the presence of a competing process

(Left) GRN application is started at GPU A at instant 142s, denoted by the vertical line.
(Right) A resource intensive rendering application is started at GPU A at 142s

UFABC 21



Conclusions

e PLB-HAC: Profile-based Load-Balancing for Heterogeneous Accelerator Clusters

Online performance modeling and precise block size selection by solving a
non-linear system of equations

Improved execution time, specially with more heterogeneous clusters

Future work:

e Fault-tolerance: execution could continue, with a new block distribution using the
performance model

e Overlapping communication with computations, as application knows in advance the
size of the next blocks to each PU

e Scalability: evaluate the use of applications executing on hundreds of PUs. But most
of them would be similar.

e Multiple kernels: extend to applications that have multiple kernels and execution
phases
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