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Abstract—The extraction of information from data collected in
a myriad of environments provides unprecedented opportunities
for a big range of actions such as decision making and better
resource management. Benefits from its processes are relatively
large for many network domains such as protocol design,
hybrid architectures redesign, and resource management and
optimization. Time series or historical data series provide can be
used in several ways like pattern analysis and prediction support,
making it an important support tool for managers to develop
goals and objectives focused on their business. The goal of this
paper is to discuss the potential of data analysis in hybrid Cloud-
Fog Radio Access Networks (CF-RAN) scenarios and present
results of applications of the data in the process of prediction
energy consumption. In particular, we analysed the knowledge
data extraction of some metrics with a strong relationship with
energy consumption and we perform a prediction by applying a
deep learning algorithm using the previous four hour period to
predict the next hour.

I. INTRODUCTION

The fifth generation of mobile networks (5G) is expected
to enable high volumes of user and industrial data, expansion
of consumers service and also allow an increasing number
of mobile devices to connect to the network. This is a
result of a combination of important features proposed to 5G.
One of such features is the adoption of the Cloud Radio
Access Network (C-RAN) architecture. C-RAN impulses a
high centralized deployment to support collaborative radio
technologies, virtualization, better resource management and
energy consumption reduction by decoupling BaseBand Units
(BBU) from cell sites and by centralizing the baseband pro-
cessing from the Remote Radio Head (RRH) into BBUs pools.
Although C-RAN produces gains, centralized baseband pro-
cessing imposes strict delay and high bandwidth requirements
to the fronthaul due to the use of the Common Public Radio
Interface (CPRI) protocol [1], [2].

To address such problems, a new architecture called Cloud-
Fog RAN (CF-RAN) [3] was proposed to increase the cov-
erage of C-RAN while limiting energy consumption. CF-
RAN architecture relies on the Fog and Cloud computing
paradigms and on the Network Function Virtualization (NFV)
technology. In CF-RAN, local processing nodes called fog
nodes are placed closer to users and activated according to
the network demand to alleviate both the cloud and fronthaul
workloads. However, in spite of these benefits, problems

associated with network resources activation as a result of
traffic demand fluctuation in mobile networks emerge [4]. Such
fluctuation directly impacts the performance of CF-RAN due
to the activation of different resources during a day, degrading
already established services or allocating more resources than
necessary. Hence, an interesting tool to enable evaluation and
specification of requirements and reconfiguration of resource
allocation is the combination of Data Analysis (DAS) and
Machine Learning (ML) prediction capabilities.

Some DAS techniques, like Data Analytics (DA), Ex-
ploratory Data Analysis (EDA) and Data Mining (DM),
emerge as key tools for improving the performance of the
5G network [5]. We claim that such benefits are extensible
to CF-RAN once flexibility, low cost, and adaptability to deal
with new demands can be easily adjusted by the application
of DAS. Also, the benefits of the prediction capabilities for
network managers can be valuable when establishing the DAs
with the fitness to mine meaningful data insights by ML.

ML enables ease way to the network management process,
driven by the ability to anticipate network configuration. In
CF-RAN, theses benefits are varied, including the ability to
promote antecipation in migration of processing nodes in order
to mitigate network latency, waste of computational resource
or overload issues, minimizing several problems associated
with traffic fluctuation and energy-inefficiency.

Therefore, in this paper we present the use of DAS to
enhance the 5G knowledge focusing on the relation of im-
portant metrics to the CF-RAN architecture; fronthaul metrics
analysis using Long Short-Term Memory (LSTM), a particular
kind Deep Recurrent Neural Network (DRNN), to predict
energy consumption in CF-RAN using the results obtained
in[6] for training, validation and testing. Results demonstrated
that LSTM predictions bring a clear overview of future energy
consumption trends and an arrangement overview of resources
used.

The rest of this paper is organized as follows: section
II presents similar related works in approach and content
aspects, we considered work that addresses DAS in 5G mobile
networks, several LSTM applications and their use for time
series prediction; section III presents the CF-RAN architec-
ture; section IV present the background of the simulator, the
LSTM algorithm formulation and the metrics for performance
evaluation considered; in section V are presented the results
and discussion acquired in the DAS and prediction results from978-1-7281-3955-5/19/$31.00 c©2019 IEEE



the LSTM; finally, section VI presents the research conclusions
and aspects.

II. RELATED WORKS

DAS applications in 5G network scenarios present a wide
range of research opportunities, such as network slicing [7] and
construction of frameworks that allows end-to-end support of
data analytics to improve 5G radio resource management and
to enable the technology for the service-based architectures
(SBAs) [5].

Authors in [8] discuss the data revolution era and tech-
nologies that make smarter environments by the use of mo-
bile devices and mobile networks. The main task is the
development of applications based on mobile cloud sensing
and its architecture. Also, the authors state that 5G and big
data technologies are promising techniques for applications in
various domains, including mobile cloud sensing.

Authors in [7] propose a methodology to provide slicing
to 5G network Mobile Network Operators (MNOs). Such
methodology is based on Key Performance Indicator (KPIs)
applied to a clustered large data sample. Authors have applied
machine learning-based algorithms over 18 months of KPIs
collected from UEs to determine number of slices to support
the largest amount of applications and services.

Authors in [9] explored several methods of integration of
Big Data-Drive (BDD) and network optimization to increase
the QoS of User’s applications. They have explored and
discussed several techniques to preform data collection and
analysis.

Authors in [5] propose a 5G architecture to allow end-to-end
DA and also affirmed that DAS is a powerful tool to provide
improvements of 5G mobile network due to the architec-
ture prediction capabilities and the several possible statistical
collection and application. Requirements of adaptability and
dynamism in the architecture development and deployment are
more easily managed by applying statistical mechanism from
the macro analysis of data.

Recently, several works make use of LSTM algorithm in
a myriad of 5G network applications. For example, authors
in [10] use LSTM to predict traffic for BBU pool resource
reallocations in a C-RAN architecture using a reconfigurable
optical add-drop multiplexer (ROADM). Authors in [11] pro-
posed a channel state information (CSI) estimation using
a combination of convolutional neural network (CNN) and
LSTM to predict CSI with high efficiency.

Time series approaches applied to prediction focusing on
energy consumption have also also been proposed. In [12],
authors have investigated the performance of Deep Neural
Network LSTM to predict levels of energy load. The authors
concentrate on the decision-making approach for future ac-
curate energy demand predictions comparing the approach in
two steps, a minute and an hour time resolution.

In this paper, we present the benefits of data analysis in
a CF-RAN architecture and the use of state-of-the-art Deep
Learning algorithms to efficiently forecast energy consump-
tion. Comparing with literature [11], [10], the authors did not

present the analysis and evaluation of metrics used in their
decision making.

III. CF-RAN ARCHITECTURE

In the CF-RAN architecture (see Fig. 1) besides the regular
connection to the BBU pool located in the Cloud, the RRHs
are also connected to the Fog level where several local
processing nodes called fog nodes can be used to process their
CPRI traffic. In this architecture, the BBUs are virtualized
into vBBUs, which are responsible for performing baseband
processing hosted on containers called Virtual Digital Units
(VDUs). These VDUs and their hosted vBBUs are dynam-
ically activated or deactivated through NFV as function of
the network demand. In this context, fog nodes are activated
to decrease the overall network latency or to alleviate the
network and processing demands in the cloud and in the
fronthaul, respectively [3]. Apart from the capacity differences
between the Cloud and the Fog, we consider that fog nodes
and cloud nodes are composed of the same components and
implement identical baseband processing functions with on-
demand activation and deactivation by applying the NFV
paradigm.

Time and Wavelength Division Multiplexed Passive Optical
Network (TWDM-PON) technology implements the fronthaul.
With TWDM-PON, virtualized dedicated PONs called virtual-
ized PON (VPON) can be created as a function of the network
demand to transport baseband signals from severals RRHs
to a single processing node, either in the cloud or in a fog
node. If the traffic exceeds the Cloud’s processing capacity,
fog nodes are activated on-demand. In case there is no need
for fog nodes, they remain deactivated.
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Fig. 1: CF-RAN Architecture

IV. DATA ANALYSIS FRAMEWORK

DAS is performed to monitor and predict the network
parameters and the behavior of CF-RAN attributes. Firstly, we
collected and generated a dataset in *.csv format with several
fronthaul metrics. Then, we decompose the data based on pre-
diction or analysis functionalities regarding some priorities on
different levels. Below, we present the main metrics analyzed:

• Session and UE Measures: related to mediations that al-
low the prediction and analysis of the Users Equipment’s
(UEs) context (prediction of some QoS metrics, for



example). Also, it is associated with connection requests
and resources availability.

• Energy consumption Measure: the energy consumption
measurements are associated with the active nodes and
their cost. The dataset contains the total of active VDUs,
the number of fog nodes used, redistribution of traffic and
others.

• Network Measure: This measure is associated with the
application domain. In the fronthaul, we measure the total
of available bandwidth, radio resource availability, total
traffic load, processing load and others.

• Performance Evaluation Measure: this analysis is as-
sociated with the number of request failure, a total of
requisition processing blocked, blocking probability rate
and others.

A. Long Short-Term Memory Algorithm

Long Short-Term Memory (LSTM), introduced by [13], is a
complex Recurrent Neural Network (RNN) used in a plethora
of applications such as voice recognition and text translation
performed, for example, by Google [14]. Unlike Feed Forward
Neural Network, LSTM and RRNs use the actual input data
and past knowledge to improve the results. RNNs have several
numbers of applications, including prediction of time series
data based on previous time samples to predict the future
configuration [15] and BBUs traffic prediction for resources
reallocation [10]. This algorithm allows inferring analyzes on
sequential or ordered data with long term relationships.

According to [16], LSTM has commonly in its composition
a cell (c(t)), an output gate (o(t)), an input gate (i(t)) and
a forget gate (f (t)). The cell contains values and the gates
manages the information in the cell. The LSTM algorithm
can be explained as follows:
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)
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(t−1) + pi � c(t−1) + bi

)
(2)

f (t) = σ

(
Wfx

(t) +Rf ŷ
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We can interpret the main components in this formulation
as follows:

• z(t): the equation 1 is the input and it is produced based
on the current input and previous output;

• i(t): the equation 2 is also know as input gate; it deter-
mines the amount of input to be retained in the cell state
c(t);

• c(t): the equation 4 is related with the current cell state.
It is performed based on the z(t) update and the previous
state;

• ŷ(t): the equation 6 is the output and represents the
analysis of the impact of the cell state in the output;

• f (t): the equation 3 the forget gate and represents the
amount of previous state that have to be removed or
passed;

• o(t): the equation 5 is the output gate and represents the
analysis of the next hidden state, previous inputs.

B. Index of Performance in Experimental Results

Metrics performance assessment used to evaluate the model
benefits and drawbacks are: mean absolute error (MAE),
median absolute error (MADE), coefficient of determination
(R2) and root mean square error (RMSE).

• Root Mean Square Error (RMSE): to evaluate the loss
function in regressions. Calculate this metric by the root
of the sum of the square distances between the predicted
and the real value.√∑T

t=1(ŷt − yt)2

T

T represent the time observed and ŷt represents the
predicted value in time t of yt real value.

• MAE: also used for regression models. This metric
is associated with the sum of the absolute differences
between predictions and real values.∑n

i=1 ŷi − yi
n

ŷi represent the predicted value of the yi real value.
• R2 Score: also applied for regression models. This metric

is associated to the analysis of agreement of the values
observed by the model. That’s mean that the larger the
R2 (near to 1), more explanatory the model is.

n∑
i=1

(ŷi − ȳ)2

n is the observation length, ŷi is the predicted value of
yi and the ȳ is the mean of the observations.

V. RESULTS

In this section, we explore the effects of data analysis
in the average fronthaul metrics and in the analysis for an
LSTM prediction. We consider a CF-RAN architecture with
one Cloud and up to two fog nodes with maximum range of
20 km extension from RRH to fog and 20 km from Fog to
Cloud. Also, we consider the following power consumption
parameters for evaluation (see Tab. I):



TABLE I: Power Consumption Parameters. Based on [3]

Element Value
Cloud 600 watts
Fog node 300 watts
VDU Cloud 100 watts
VDU Fog 50 watts
vBBU 20 watts
Line Card 5 watts
OLT 100 watts

Power consumption collected and used for prediction is
presented in figure 2. Important information is about the stand-
alone consumption that is equal to 600W , but it begins, at the
time 0h, equals to 0W in every single day.

We calculate the power consumption by collecting the con-
sumption of all active processing elements in the environment,
such as VDUs, processing nodes, LCs activated and vBBUs.
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Fig. 2: Normalizes Plot of Energy Consumption in CF-RAN

In this paper, LSTM network was performed using 80% for
training and validation, and the last 20% used for testing. In the
training process, we used batch sizes of 12 and 1000 epochs
for optimization. We present the metrics of performance
evaluation used in subsection IV-B.

A. DAS Analysis Results

Among the analyzes performed in this process, we used the
correlation matrix in the process of identifying metrics with a
strong relationship with the energy consumption and, besides
that, only identified metrics were considered for the rest of
DAS steps. The metrics used are rearranged as present in Tab.
II.

TABLE II: Summary of the metrics collected

Summary
A Energy J Activated dus
B RRH redistribution K Avg. total. allocated
C Total requested L Avg. time. inc. batch
D Average act. switch M Avg. service availability
E Avg. act. nodes N Avg. lambda usage
F Avg. act. lambdas O RRHs available
G Avg. act. dus P Arrival rate
H Migrations Q Time
I Actived lambdas

Fig. 3: Plot of Correlation Data

The correlation matrix is a standardization measure that
establishes the relationship between two variables indicating
their strength and their direction through the linear relationship
between each other. Moreover, it is also possible to make this
identification of this correlation by observing the pattern in a
scatter diagram.

In Fig. 3, we identified a strong relationship between the
energy cost and the following metrics: arrival rate; average
lambda usage; average total allocated; migrations; total re-
quest. The arrival rate, for example, that is associated with
the queuing theory and to the average arrival rate of the
traffic in individual nodes of the network, its observed that
the total amount of network traffic at the moment, when
being at the peak, starts to activate the fog nodes to relieve
the fronthaul, implying direct higher consumption of energy.
Another example is the migration, associated with total redis-
tributions of traffic between fogs or cloud fog, which occurs
on-demand, which also implies a considerable increase in
energy consumption.

Scatter plot is considered a useful tool for performing a
series of data comparisons, allowing a visual demonstration
of various data relationships to check for association with
strength, direction and correlation.

In Fig. 4, we compared metrics identified in the matrix
of correlations group by energy. Also, we get a better ob-
servation regarding the correlation already presented in Fig.
3. The values of the metrics grow with the increase of the
energy values, which enables affirming that have a positive
correlation. Besides, it is observed that the lambda usage, total
allocated and the total request has a linear relationship with
energy and enables affirming that it has a concordance. On the
other hand, In arrival rate and migrations, there is a correlation,
but the variables are independent of energy.

In Fig.5, arranged metrics in the matrix of correlations are

Fig. 4: Scatter Plot



Fig. 5: Data Behaviour

represented by its data behavior in the dataset. We observed
a strong association between total requests and avg. total
allocated since the blocking probability is low. Fig. 5 also
demonstrates the behavior of metrics within the dataset. For
example, Arrival rate follows a Gaussian behavior given its
direct relation to the generated traffic, which also follows a
Gaussian behavior.

Boxplot of data is another useful tool that provides a
complementary measure of the data character’s perspective
for discretionary data (outliers), as well as visual support of
position, dispersion, and symmetry. Outliers were identified in
the migration considering the values upper to 5 as discrepant
(see Fig. 6). Also, we identified a small variation in the arrival
rate, avg. lambda usage and migrations data, if compared
to the other two metrics that have more varied values. The
maximum identified in the boxplot for avg. total allocated and
the total request is equal. Furthermore, a slight asymmetry
was identified that implies in a majority located data in the
low side.

Next boxplot (see Fig. 7) demonstrate a box for each
continuous features based on one feature selected for grouping.
In this case, we selected an energy-based data grouping. Thus,
we identified several important observation of the way the in-
teraction of energy and the metrics occur. For example, a direct
relationship between the total number of generated requests
that increases and directly imposed the energy consumption
that grows too. Another observation is that higher values of
energy are directly related to higher values of the metrics, wich
giving a perception that they are directly associated. Higher
energy consumption is also associated with higher arrival rates.

Arrival rate, total requested and avg. total allocated reinforce
previous observations about the direct relationship of these

Fig. 6: Data BoxPlot

Fig. 7: BoxPlot Grouped by Energy

metrics to the energy consumption.

B. Energy Consumption Prediction with LSTM

We collected, trained and compared data in the test pro-
cess with those based on [6]. As a first experiment, a
regression-based recurrent networks utilizing an LSTM ar-
chitecture trained using Truncated Back-propagation Through
Time (TBPTT), Adam optimization, batch size of 12, MSE
loss function and a number of previous time steps in 4 to
predict the next time period, corresponding four hours, was
implemented to provide first results presented in Fig. 8(a).

For regularizing the results, we use a Dropout rate of 20%
for a probabilistic exclusion method in LSTM trains process
focusing on the weight update to provide overfitting reduction.

For the experiments, the model obtains an MAE in 95.58W ,
RMSE 237.13W , maximum error in 531.4W and a R2 Score
in 0.87, corresponding to 87% of adjustment.

As a second experiment, a stack-based LSTM architecture
trained using TBPTT, Adam optimization, batch size of 12,
MSE loss function and several previous time steps in 4
to predict the next period, corresponding four hours, was
implemented to provide results presented in Fig. 8(b).

As a result in its prediction, we get an MAE in 25.34W , was
acquired an RMSE in 98.71W , the maximum error in 165.76
and R2 Score in 0.95, corresponding to 95% of adjustment.

If comparing the two results presented, it observed a big ca-
pacity of energy values prediction even in a dynamic network
traffic request environment. The stack-based LSTM presents
better results but with a long time of execution even with the
Dropout. With this perspective, the benefits of the results are
considerable, for example, a perceptual of reduction in the
MAE and R2 Score gain in 8%.

VI. CONCLUSION

We investigated a two-level CF-RAN architecture data be-
havior focusing on the prediction of energy consumption in
a dynamic scenario. As a result, we presented the CF-RAN
scenario and presented six metrics with a strong relationship
with energy consumption in a set of many generated. Also, we
presented an analysis of these metrics and how they relate to
energy wast. Also, we presented a time series forecast problem
of energy consumption in a CF-RAN dynamic scenario using
two LSTM deep recurrent neural network architecture, we
compared these approaches of LSTM architecture and com-
pared its results employing energy prediction.
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(a) Regression-Based LSTM Results
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(b) Stacked-Based LSTM Results

Fig. 8: LSTM Results acquired

The predicted results for resources waste demonstrated a
slight variation of the real. This allows a refined view of how
processing resources should be allocated to better manage the
network with an hour’s advance, which provides to the network
operator an advantage in making a better decision, enabling
optimized management and better evaluation of processing
resources.

Predictions acquired also allows the network managers to
know how energy expenditure will be configured in advantage
and which metrics have an impact on this process. With these
results, managers can make decisions about network inferences
or reallocation of resources to improve or optimizer decision-
maker.
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