
Program-Aware Fuzzing for MQTT Applications
Luis Gustavo Araujo Rodriguez

Daniel Macêdo Batista
luisgar@ime.usp.br
batista@ime.usp.br

Department of Computer Science - University of São Paulo (USP)
São Paulo, São Paulo, Brazil

ABSTRACT
Over the last few years, MQTT applications have been widely ex-
posed to vulnerabilities because of their weak protocol implemen-
tations. For our preliminary research, we conducted background
studies to: (1) determine the main cause of vulnerabilities in MQTT
applications; and (2) analyze existing MQTT-based testing frame-
works. Our preliminary results confirm that MQTT is most suscep-
tible to malformed packets, and its existing testing frameworks are
based on blackbox fuzzing, meaning vulnerabilities are difficult and
time-consuming to find. Thus, the aim of my research is to study
and develop effective fuzzing strategies for the MQTT protocol,
thereby contributing to the development of more robust MQTT
applications in IoT and Smart Cities.

CCS CONCEPTS
• Security and privacy→Mobile and wireless security; •Net-
works→ Protocol testing and verification.

KEYWORDS
MQTT, Internet of Things, Security, Testing, Fuzzing

ACM Reference Format:
Luis Gustavo Araujo Rodriguez and Daniel Macêdo Batista. 2020. Program-
Aware Fuzzing for MQTT Applications. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
’20), July 18–22, 2020, Virtual Event, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3395363.3402645

1 PROBLEM STATEMENT
The Internet of Things (IoT) is becoming the next step in Inter-
net evolution [22, 24], enabling several types of devices to interact
through communication protocols. Among IoT protocols, the Mes-
sage Queuing Telemetry Transport (MQTT) protocol is considered
the best, offering lightweight-messaging and low-bandwidth con-
sumption [4, 5, 16, 30]. Over the last few years, MQTT applications
have increased drastically [15, 18]. In fact, MQTT currently ranks as
the most popular publish-subscribe protocol [11]. Moreover, MQTT

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’20, July 18–22, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8008-9/20/07. . . $15.00
https://doi.org/10.1145/3395363.3402645

is the most widely-used IoT protocol [11], standardized by ISO/IEC
20922 and OASIS.

Currently, research on MQTT security is underdeveloped [15].
In fact, MQTT applications have been widely criticized over the last
few years for their lack of security [21] and faulty implementations
in real-world environments [2, 3, 7, 18, 28]. Considering this issue,
we decided to conduct studies to answer two main background
questions: (1) What are the most common types of flaws in these im-
plementations? ; and (2)What testing frameworks have been proposed
to mitigate these flaws?

In order to answer the first question, we conducted a manual
study to determine the root cause of vulnerabilities. All MQTT-
related vulnerabilities (As of April 22nd, 2020) were collected from
the National Vulnerability Database (NVD), which is the most
widely-used exploit repository [13]. Based on our findings pre-
sented in Figure 1, thirty-seven vulnerabilities (71.15%) are triggered
by malformed MQTT control packets.

 71.15%

 23.08%

 5.77%

Malformed MQTT control packets
Other Issues
Cryptographic Issues

Figure 1: Causes of vulnerabilities in MQTT applications

Malformed control packets could allow information disclosure;
remote code execution; and denial of service, thereby hindering
confidentiality, integrity, and availability respectively [20]. In fact,
a stack overflow vulnerability in MQTT (CVE-2019-11779)1 was
recently discovered by sending a crafted subscribe packet.

Similar to the research by Rodriguez et al. [25], we’ve analyzed
all vulnerability disclosures related to MQTT from NVD. Based
on our findings, vulnerabilities triggered by malformed packets
1https://nvd.nist.gov/vuln/detail/CVE-2019-11779. Accessed on Apr 30th, 2020

582

https://doi.org/10.1145/3395363.3402645
https://doi.org/10.1145/3395363.3402645
https://nvd.nist.gov/vuln/detail/CVE-2019-11779

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Luis Gustavo Araujo Rodriguez and Daniel Macêdo Batista

have higher disclosure delays than their counterparts, hindering
immediate measures against cyberattacks. In addition to disclo-
sure delays, deploying and applying patches is usually complex
in MQTT environments. For example, open source home automa-
tion software such as HomeAssistant lack auto-update functionality,
meaning MQTT flaws are rarely patched. Moreover, popular home
automation devices such as Sonoff are vulnerable to malformed
MQTT packets [1], and require manual intervention to update as
well.

2 RELATEDWORK
Testing MQTT applications with effective mechanisms can mitigate
these aforementioned issues [7, 27–29]. Thus, in order to answer the
second background question (What testing frameworks have been
proposed to mitigate these flaws?), we conducted a literature review
of existing security-testing frameworks for MQTT. Since MQTT is
most susceptible to vulnerabilities triggered by malformed packets,
fuzz testing [19] can play a key role in mitigating this issue. In fact,
fuzz testing is considered one of the most promising methods for
discovering vulnerabilities in IoT [17]. Thus, the following subsec-
tions focus specifically on existing fuzzing frameworks for MQTT.
The subsections are organized by the year the initial versions of
these frameworks were released.

2.1 2015 or Earlier
Defensics2 is a hybrid blackbox fuzzer, developed by Synopsys,
for several protocols, including MQTT. Defensics offers over 250
ready-made test cases; an SDK for custom-made test cases; and a
traffic capture fuzzer to generate new test cases. A process monitor
and reports are provided for analysis. Although Defensics provides
several tools for security-testing, it is not open-source, thereby
preventing a higher user adoption.

F-Secure Corporation [12] proposemqtt-fuzz, a blackboxmutation-
based fuzzer for the MQTT protocol. Its aim is to reduce effort and
offer simplicity to developers, thereby lacking complex protocol
processing. Although mqtt-fuzz is open-source, it requires consid-
erable amount of test cases to reach deep protocol states.

2.2 2017
Anantharaman et al. [3] construct a Finite State Machine (FSM)
based on specifications of the MQTT protocol. An input language
and parsers were defined and developed for each state respectively.
A blackbox generation-based fuzzer was developed to test these
parsers. The fuzzer generates test cases based on the input language,
meaning it sends correctly-formed packets to the SystemUnder Test
(SUT). Rather than using the fuzzer to discover vulnerabilities, this
research uses it to test the semantic correctness of the messages.

2.3 2018
Hernández Ramos et al. [15] propose a mutation-based, blackbox
fuzzer for the MQTT protocol. The aim of this research is to re-
duce effort when verifying security of MQTT applications. The
architecture of the fuzzer mainly consists of a network sniffer,
a template-generator, and the fuzzer itself. The sniffer retrieves
2https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html.
Accessed on November 17th, 2019

network packets between the client and the broker. The template-
generator generates and exports templates based on the network
packets. From these templates, the user manually marks the fields
that will be fuzzed. The fuzzer then mutates these fields by using
test cases provided by the user or generating random inputs auto-
matically. The experiments were done with twoMQTT implementa-
tions: Mosquitto and Moquette. A total of three vulnerabilities were
discovered, being mostly denial of service. Although the fuzzer had
low CPU consumption, it lacks coverage feedback.

Eclipse Foundation [10] proposes a fuzz testing framework for
the MQTT protocol. The fuzzer acts as a man-in-the-middle, mu-
tating network packets between the client and the server. It is a
mutation-based blackbox fuzzer, requiring valid templates to gen-
erate the test cases. Similar to the fuzzer proposed by Hernández
Ramos et al. [15], the user manually selects the messages that will
be fuzzed. The developers warn that basic random generators are
used to mutate the messages.

Although fuzzing frameworks by Hernández Ramos et al. [15]
and the Eclipse Foundation [10] have low-time complexity, they
act as a proxy and thus lack support for stateful fuzzing [8, 15].

2.4 2019
Palmieri et al. [21] propose MQTTSA, a penetration testing frame-
work for MQTT. MQTTSA detects potential vulnerabilities and
generates a report offering suggestions to mitigate these issues.
MQTTSA consists of three penetration-testing mechanisms: au-
thentication bruteforcing, data tampering, and denial of service.
Data tampering is based on a mutation-based blackbox fuzzer. Ex-
periments were done with brokers found online and five different
deployments of Mosquitto. Approximately 60% of brokers found on-
line lack confidentiality and integrity. Although Mosquitto proves
to be secure when configured correctly, this research recommends
complementing MQTTSA with more effective fuzzing techniques
or using F-Secure’s fuzzer [12] for better testing.

2.5 Limitations of Existing MQTT Fuzzers
We classified each MQTT fuzzer into three categories (Table 1): un-
derstanding the target program; aware of the input structure; and
input generation. Analyzing the current state-of-art reveals that ex-
isting MQTT fuzzers have several limitations. First, existing MQTT-
based testing frameworks are based on blackbox fuzzing, meaning
they require considerable amount of test cases to reach deep pro-
tocol states [21]. Currently, greybox and whitebox MQTT fuzzers
are nonexistent. Second, these blackbox fuzzers discard coverage-
increasing inputs during the fuzzing campaign. This means that
many inputs could traverse the same path. As a result, vulnerabili-
ties are difficult and time-consuming to find. Third, the probability
of false negatives is high because of the lack of program analysis.
In addition to the aforementioned fuzzers, popular platforms such
as Peach Fuzzer3, F-Interop4, and American Fuzzy Lop5 currently
lack support for MQTT. Because of these limitations and lack of
support, recent research papers have expressed interest in a smart
MQTT fuzzer for more effective testing [3, 21].

3https://www.peach.tech/products/peach-fuzzer/. Accessed on August 7th, 2019
4https://www.f-interop.eu/. Accessed on June 8th, 2019
5https://github.com/google/AFL

583

https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html
https://www.peach.tech/products/peach-fuzzer/
https://www.f-interop.eu/
https://github.com/google/AFL

Program-Aware Fuzzing for MQTT Applications ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Table 1: Classification of existing MQTT fuzzers

Existing
Frameworks

Understanding target program Aware of input structure Input generation Open
SourceBlackbox Greybox Whitebox Smart Naive Mutation-Based Generation-Based

Synopsys ✓ ✓ ✓ ✓

F-Secure Corporation, 2015 [12] ✓ ✓ ✓ ✓

Anantharaman et al. (2017) [3] ✓ ✓ ✓

Hernandez et al. (2018) [15] ✓ ✓ ✓ ✓

Eclipse Foundation, 2018 [10] ✓ ✓ ✓ ✓

Palmieri et al. (2019) [21] ✓ ✓ ✓ ✓

3 PROPOSED RESEARCH
Considering our studies presented in Sections 1 and 2, the aim of the
Ph.D. research is to study and develop effective strategies for fuzz
testing the MQTT protocol. More specifically, we want to address
limitations of existing MQTT fuzzers by using program analysis,
thereby offering developers a more modern fuzzer than previous
works in the literature. Program analysis can be performed through
greybox or whitebox approaches. Our goal is to develop a fuzzing
framework specifically adapted to MQTT’s characteristics.

Analyzing MQTT’s vulnerabilities and existing frameworks was
crucial for constructing our hypothesis, which is:

When using program-aware fuzzing, efficiency is con-
siderably higher than that of existing MQTT fuzzers.

The research questions that will be used to validate our hypoth-
esis are as follows.

RQ1 How efficient are existing fuzzing frameworks forMQTT?
RQ2 How efficient are program-aware fuzzing techniques for

MQTT?
RQ3 What are the characteristics of MQTT vulnerabilities that

are revealed by means of fuzz testing?
This research will involve three main efforts: (1) an empirical

study of existing MQTT-based testing frameworks; (2) the develop-
ment of program-aware approaches for fuzzing MQTT applications;
and (3) an evaluation of different fuzzing techniques in virtual and
real-world environments, determining the most suitable approach
for MQTT. The main results expected from this research are: (1)
improved understanding of existing MQTT fuzzers; (2) effective
strategies for fuzzing MQTT; and (3) robust MQTT applications
in IoT and Smart Cities. This research will provide two types of
contributions:

Scientific Contribution: The methodology used for this re-
search will support future developments of testing tools
either for MQTT, publish-subscribe protocols, or IoT in gen-
eral.

Technical Contribution: To the best of our knowledge, no
greybox or whitebox fuzzer exists for MQTT. Thus, this re-
search will provide the first program-aware fuzzer for MQTT.
The tools developed for this research will be open-source,
allowing developers to test their MQTT applications and
improve or build on top of our work for future research.

4 METHODOLOGY AND EVALUATION PLANS
An MQTT broker needs to be heavily robust against cyberattacks
because it handles requests from publishers and subscribers [6, 14].

Since the broker is considered to be the main component of the
publish-subscribe model, this research will focus on testing broker-
side implementations of MQTT such as Mosquitto.

Our testbed consists of two main components: the fuzzer and
the MQTT broker, simulating an attacker and a target system re-
spectively. Both components were configured to communicate with
each other on a private network. The goal is to determine the most
suitable fuzzing technique for MQTT, whether it be blackbox or
program-aware approaches. Test effectiveness or efficiency of each
fuzzer (RQ1 and RQ2) will be measured in terms of code coverage;
state exploration; unique crashes; and execution times. The follow-
ing subsections explain how we attempt to tackle each research
question.

4.1 RQ1: How efficient are existing fuzzing
frameworks for MQTT?

The current state-of-art (Table 1) shows little evidence of the effec-
tiveness of existing fuzzing frameworks for MQTT. Thus, we are
currently conducting experiments to evaluate these tools individu-
ally. The goal is to analyze their fuzzing efficiency, which will then
serve as a baseline to compare with program-aware approaches.

4.1.1 Ongoing Experiments. We are currently conducting experi-
ments with F-Secure’s MQTT fuzzer [12] to evaluate its code cover-
age and vulnerability detection capabilities. Thus far, we tested the
most recent versions of Mosquitto (1.6.0 - 1.6.9), using Gcov and
AddressSanitizer as our instrumentation tools.

4.1.2 Preliminary Results. F-Secure’s fuzzer injectsmalformed pack-
ets into each version of Mosquitto for twenty-four hours. Approxi-
mately ten million packets were exchanged between the fuzzer and
the broker during the campaign. However, in most cases (Versions
1.6.0, 1.6.1, 1.6.3, 1.6.4, and 1.6.5 of Mosquito) only 32% of the code
was covered by the fuzzer. In three cases (Versions 1.6.2, 1.6.6, and
1.6.8) only 33% of the code was covered and in two cases (Versions
1.6.7 and 1.6.9) only 31% of the code was covered. This means that
most test cases traversed through the same path, mainly because
of the lack of coverage feedback. Moreover, neither existing nor
non-existing vulnerabilities were triggered during the fuzzing cam-
paign. We’ve also conducted a few experiments with MQTTSA’s
fuzzer. It managed to cover at most 25% of Mosquitto’s source code,
further highlighting the inefficiency of public MQTT fuzzers.

We plan to continue performing experiments with other open-
source fuzzing frameworks (Table 1) to evaluate their efficiency.

584

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Luis Gustavo Araujo Rodriguez and Daniel Macêdo Batista

4.2 RQ2: How efficient are program-aware
fuzzing techniques for MQTT?

Preliminary results from RQ1 suggest the necessity of program-
aware approaches for fuzzingMQTT applications.With the insights
from RQ1, we will develop greybox or whitebox approaches that
attempt to mitigate limitations of existing frameworks. Since no
program-aware fuzzer exists for MQTT, there is a wide range of
techniques that can be considered for this research such as guided-
fuzzing or symbolic execution.

At the time of writing, we plan to focus first on greybox ap-
proaches for improving fuzzing efficiency. Whitebox techniques
will be considered depending on our research schedule. Greybox
approaches were selected because they combine advantages of both
blackbox and whitebox fuzzers, using lightweight instrumentation
with minimal overhead. More specifically, we plan on using Genetic
or evolutionary algorithms, for traversing unexplored or specific
regions of the code during the fuzzing campaign. Figure 2 presents
an initial flow diagram of each component that will be considered
for developing our program-aware fuzzer.

Fuzz Data
Generator

Initial
Population MQTT Broker

1 2 3

5

Input
Evaluation

4 Monitor
Program

010101
010101
010101

010101
0101&%
@$1/()

Results

010101
0101&%
@$1/()

Figure 2: Architecture of a program-aware fuzzer for MQTT

4.2.1 Initial Population. The initial test cases will be generated
by capturing valid packets using tools such as Wireshark or Scapy.
This approach has been used in several frameworks for MQTT [12,
15]. However, preliminary results from RQ1 suggest that existing
MQTT fuzzers may have difficulties in triggering existing or non-
existing vulnerabilities. A more effective approach would be to
generate initial test cases based on existing vulnerabilities. Thus,
we plan to build a dataset of malicious inputs from existing CVE
reports, which will be used as seeds to trigger potential flaws.

4.2.2 Fuzz Data Generator. Preliminary results from RQ1 suggest
that existing MQTT fuzzers achieve low state coverage. Thus, our
fuzzer will interact directly with the target system, rather than
acting as a man-in-the-middle. This approach was chosen in or-
der to offer a more flexible framework, capable of generating test
cases based on existing vulnerabilities, a grammar, or whitebox
approaches. Best practices for mutating inputs will also be studied.

4.2.3 MQTT Broker. Open-source brokers such as Mosquitto; Mo-
quette; Emqttd; and RabbitMQ will be considered to enable program-
aware approaches, and thus improve the accuracy of the tests [28].
These brokers were selected because of their popularity and incon-
sistencies with the protocol standard [9, 15, 20].

4.2.4 Monitor Program and Input Evaluation. Once a test case is
selected and injected to the target system, the most effective test
cases will be kept for future iterations. Since preliminary results
from RQ1 reveal that most test cases traverse through the same
path, the criteria (or fitness function) for selecting test cases will be
based on code coverage or state exploration. We plan to perform
the following activities: (1) study and complement our approach
with effective techniques such as stateful fuzzing, which has been
successful for network protocols [8, 23]; (2) conduct a qualitative
analysis to receive feedback from developers on our fuzzing ap-
proach and important metrics to test MQTT applications; (3) use
input minimization [26], by reducing and keeping the most effective
test cases; (4) select efficient evolutionary algorithms for generat-
ing test cases; (5) test MQTT applications deployed in virtual and
real-world environments; and (6) analyze experiment results and
determine the most effective approach for testing MQTT applica-
tions.

4.3 RQ3: What are the characteristics of MQTT
vulnerabilities that are revealed by means
of fuzz testing?

We plan to analyze the characteristics of vulnerabilities found dur-
ing our experiments. This analysis could allow us to create a taxon-
omy to classify security vulnerabilities in MQTT applications.

5 CONCLUSIONS
MQTT is currently being integrated into several IoT-based appli-
cations, such as home automation systems; health monitoring sys-
tems; and intelligent transportation systems. Considering these
scenarios, it is important to mitigate potential attacks and increase
reliability of MQTT applications. However, MQTT applications
have been widely criticized over the last few years for their weak
protocol implementations. Our background studies confirm that
MQTT is most susceptible to malformed packets, hence the impor-
tance of fuzz testing. Existing MQTT fuzzers are based on blackbox
testing, lacking any type of program analysis, thereby offering dif-
ficulty to discover vulnerabilities. Thus, the aim of this research is
to study and develop effective strategies for fuzz testing the MQTT
protocol. We are currently performing experiments with existing
frameworks to evaluate their efficiency, which will be crucial when
developing program-aware approaches for fuzzing MQTT appli-
cations. Our program-aware fuzzer will be open-source, allowing
developers to test their MQTT applications effectively, thereby
deploying more robust MQTT applications in IoT and Smart Cities.

ACKNOWLEDGMENTS
We would like to thank Professor Maurício Aniche from TU Delft,
and Professor Paulo Lício de Geus from UNICAMP for their sugges-
tions to improve our research. This paper would not have been pos-
sible without their support. This research is part of the INCT of the
Future Internet for Smart Cities funded by CNPq proc. 465446/2014-
0, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior –
Brasil (CAPES) – Finance Code 001, FAPESP proc. 14/50937-1, and
FAPESP proc. 15/24485-9. This research is also funded by FAPESP
proc. 18/22979-2 and CAPES.

585

Program-Aware Fuzzing for MQTT Applications ISSTA ’20, July 18–22, 2020, Virtual Event, USA

REFERENCES
[1] Daniel Abeles and Moshe Zioni. 2019. MQTT-PWN Documentation. https://

buildmedia.readthedocs.org/media/pdf/mqtt-pwn/latest/mqtt-pwn.pdf. [Online;
accessed 17-September-2019].

[2] Khalid Alghamdi, Ali Alqazzaz, Anyi Liu, and Hua Ming. 2018. Iotverif: An
automated tool to verify SSL/TLS certificate validation in android MQTT client
applications. In Proceedings of the ACM Conference on Data and Application
Security and Privacy. 95–102. https://doi.org/10.1145/3176258.3176334

[3] P. Anantharaman, M. Locasto, G. F. Ciocarlie, and U. Lindqvist. 2017. Build-
ing Hardened Internet-of-Things Clients with Language-Theoretic Security.
In Proceedings of the IEEE Security and Privacy Workshops. 120–126. https:
//doi.org/10.1109/SPW.2017.36

[4] S. Andy, B. Rahardjo, and B. Hanindhito. 2017. Attack scenarios and security
analysis of MQTT communication protocol in IoT system. In Proceedings of the In-
ternational Conference on Electrical Engineering, Computer Science and Informatics.
1–6. https://doi.org/10.1109/EECSI.2017.8239179

[5] Joseph Jose Anthraper and Joseph Kotak. 2017. Security, Privacy and Forensic
Concern of MQTT Protocol. In Proceedings of the International Conference on
Sustainable Computing in Science, Technology and Management. 1–8. https:
//doi.org/10.2139/ssrn.3355193

[6] João Antunes, Nuno Neves, Miguel Correia, Paulo Verissimo, and Rui Neves.
2010. Vulnerability discovery with attack injection. IEEE Transactions on Software
Engineering 36, 3 (2010), 357–370. https://doi.org/10.1109/TSE.2009.91

[7] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin,
Xiaofeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Kehuan
Zhang. 2018. IoTFuzzer: Discovering Memory Corruptions in IoT Through
App-based Fuzzing. In Network and Distributed Systems Security Symposium.
https://doi.org/10.14722/ndss.2018.23159

[8] Yurong Chen, Tian lan, and Guru Venkataramani. 2019. Exploring Effective
Fuzzing Strategies to Analyze Communication Protocols. In Proceedings of the
3rd ACM Workshop on Forming an Ecosystem Around Software Transformation
(London, United Kingdom). Association for Computing Machinery, New York,
NY, USA, 17–23. https://doi.org/10.1145/3338502.3359762

[9] D. L. de Oliveira, A. F. da S. Veloso, J. V. V. Sobral, R. A. L. Rabêlo, J. J. P. C.
Rodrigues, and P. Solic. 2019. Performance Evaluation of MQTT Brokers in the
Internet of Things for Smart Cities. In Proceedings of the International Conference
on Smart and Sustainable Technologies. 1–6. https://doi.org/10.23919/SpliTech.
2019.8783166

[10] Eclipse Foundation. 2018. Eclipse IoT-Testware. https://iottestware.readthedocs.
io/en/development/smart_fuzzer.html. [Online; accessed 17-October-2019].

[11] Eclipse Foundation. 2019. IoT Developer Survey. https://iot.eclipse.org/resources/
iot-developer-survey/iot-developer-survey-2019.pdf. [Online; accessed 15-June-
2019].

[12] F-Secure Corporation. 2015. A simple fuzzer for the MQTT protocol. https:
//github.com/F-Secure/mqtt_fuzz. [Online; accessed 16-September-2019].

[13] Ming Fang andMunawarHafiz. 2014. Discovering Buffer OverflowVulnerabilities
in the Wild: An Empirical Study. In Proceedings of the ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement. ACM, Article
23, 10 pages. https://doi.org/10.1145/2652524.2652533

[14] S. N. Firdous, Z. Baig, C. Valli, and A. Ibrahim. 2017. Modelling and Evaluation
of Malicious Attacks against the IoT MQTT Protocol. In Proceedings of the IEEE
International Conference on Internet of Things and the IEEE Green Computing
and Communications and IEEE Cyber, Physical and Social Computing and IEEE
Smart Data. 748–755. https://doi.org/10.1109/iThings-GreenCom-CPSCom-
SmartData.2017.115

[15] Santiago Hernández Ramos, M. Teresa Villalba, and Raquel Lacuesta. 2018. MQTT
Security: A Novel Fuzzing Approach. Wireless Communications and Mobile
Computing 2018 (2018), 1–11. https://doi.org/10.1155/2018/8261746

[16] Rob Kitchin and Martin Dodge. 2019. The (In)Security of Smart Cities: Vulner-
abilities, Risks, Mitigation, and Prevention. Journal of Urban Technology 26, 2
(2019). https://doi.org/10.1080/10630732.2017.1408002

[17] Jian-Zhen Luo, Chun Shan, Jun Cai, and Yan Liu. 2018. IoT Application-Layer
Protocol Vulnerability Detection using Reverse Engineering. Symmetry 10, 11
(2018), 561. https://doi.org/10.3390/sym10110561

[18] Federico Maggi, Rainer Vosseler, and Davide Quarta. 2018. The Fragility of
Industrial IoT’s Data Backbone. https://documents.trendmicro.com/assets/
white_papers/wp-the-fragility-of-industrial-IoTs-data-backbone.pdf

[19] Valentin Jean Marie Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha,
Manuel Egele, Edward J Schwartz, and Maverick Woo. 2019. The Art, Science,
and Engineering of Fuzzing: A Survey. IEEE Transactions on Software Engineering
(2019).

[20] Kristiyan Mladenov, Stijn Van Winsen, Chris Mavrakis, and KPMG Cyber. 2017.
Formal verification of the implementation of the MQTT protocol in IoT devices.
Master’s dissertation. University of Amsterdam.

[21] Andrea Palmieri, Paolo Prem, Silvio Ranise, Umberto Morelli, and Tahir Ahmad.
2019. MQTTSA : A Tool for Automatically Assisting the Secure Deployments of
MQTT brokers. In IEEE World Congress on Services, Vol. 2642-939X. IEEE, 47–53.
https://doi.org/10.1109/SERVICES.2019.00023

[22] Yusuf Perwej, Majzoob Omer, Osama Sheta, Hani Harb, and Mohammed Adrees.
2019. The Future of Internet of Things (IoT) and Its Empowering Technology.
International Journal of Engineering Science and Computing Volume 9 (March
2019), 20192 – 20203.

[23] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. 2020. AFLNet: A
Greybox Fuzzer for Network Protocols. In Proceedings of the IEEE International
Conference on Software Testing, Verification and Validation : Testing Tools Track.

[24] Pedro Martins Pontes, Bruno Lima, and João Pascoal Faria. 2018. Izinto: A Pattern-
Based IoT Testing Framework. In Companion Proceedings for the ISSTA/ECOOP
2018 Workshops (Amsterdam, Netherlands). Association for Computing Machin-
ery, New York, NY, USA, 125–131. https://doi.org/10.1145/3236454.3236511

[25] Luis Gustavo Araujo Rodriguez, Julia Selvatici Trazzi, Victor Fossaluza, Rodrigo
Campiolo, and Daniel Macêdo Batista. 2018. Analysis of Vulnerability Disclosure
Delays from the National Vulnerability Database. In Proceedings of the Workshop
on CyberSecurity in Connected Devices in the Brazilian Symposium on Computer
Networks and Distributed Systems. https://portaldeconteudo.sbc.org.br/index.
php/wscdc/article/view/2394

[26] Gary J Saavedra, Kathryn N Rodhouse, Daniel M Dunlavy, and Philip W
Kegelmeyer. 2019. A Review of Machine Learning Applications in Fuzzing.
arXiv (2019).

[27] M. Schiefer. 2015. Smart Home Definition and Security Threats. In Proceedings
of the International Conference on IT Security Incident Management IT Forensics.
114–118. https://doi.org/10.1109/IMF.2015.17

[28] Synopsis. 2017. State of Fuzzing. https://www.synopsys.com/content/dam/
synopsys/sig-assets/reports/state-of-fuzzing-2017.pdf. [Online; accessed 15-
June-2019].

[29] C. Săndescu, O. Grigorescu, R. Rughiniş, R. Deaconescu, and M. Calin. 2018.
Why IoT security is failing. The Need of a Test Driven Security Approach. In
Proceedings of the International Conference: Networking in Education and Research.
1–6. https://doi.org/10.1109/ROEDUNET.2018.8514135

[30] M. B. Yassein, M. Q. Shatnawi, S. Aljwarneh, and R. Al-Hatmi. 2017. Internet
of Things: Survey and open issues of MQTT protocol. In Proceedings of the
International Conference on Engineering MIS. 1–6. https://doi.org/10.1109/ICEMIS.
2017.8273112

586

https://buildmedia.readthedocs.org/media/pdf/mqtt-pwn/latest/mqtt-pwn.pdf
https://buildmedia.readthedocs.org/media/pdf/mqtt-pwn/latest/mqtt-pwn.pdf
https://doi.org/10.1145/3176258.3176334
https://doi.org/10.1109/SPW.2017.36
https://doi.org/10.1109/SPW.2017.36
https://doi.org/10.1109/EECSI.2017.8239179
https://doi.org/10.2139/ssrn.3355193
https://doi.org/10.2139/ssrn.3355193
https://doi.org/10.1109/TSE.2009.91
https://doi.org/10.14722/ndss.2018.23159
https://doi.org/10.1145/3338502.3359762
https://doi.org/10.23919/SpliTech.2019.8783166
https://doi.org/10.23919/SpliTech.2019.8783166
https://iottestware.readthedocs.io/en/development/smart_fuzzer.html
https://iottestware.readthedocs.io/en/development/smart_fuzzer.html
https://iot.eclipse.org/resources/iot-developer-survey/iot-developer-survey-2019.pdf
https://iot.eclipse.org/resources/iot-developer-survey/iot-developer-survey-2019.pdf
https://github.com/F-Secure/mqtt_fuzz
https://github.com/F-Secure/mqtt_fuzz
https://doi.org/10.1145/2652524.2652533
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.115
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.115
https://doi.org/10.1155/2018/8261746
https://doi.org/10.1080/10630732.2017.1408002
https://doi.org/10.3390/sym10110561
https://documents.trendmicro.com/assets/white_papers/wp-the-fragility-of-industrial-IoTs-data-backbone.pdf
https://documents.trendmicro.com/assets/white_papers/wp-the-fragility-of-industrial-IoTs-data-backbone.pdf
https://doi.org/10.1109/SERVICES.2019.00023
https://doi.org/10.1145/3236454.3236511
https://portaldeconteudo.sbc.org.br/index.php/wscdc/article/view/2394
https://portaldeconteudo.sbc.org.br/index.php/wscdc/article/view/2394
https://doi.org/10.1109/IMF.2015.17
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/state-of-fuzzing-2017.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/state-of-fuzzing-2017.pdf
https://doi.org/10.1109/ROEDUNET.2018.8514135
https://doi.org/10.1109/ICEMIS.2017.8273112
https://doi.org/10.1109/ICEMIS.2017.8273112

	Abstract
	1 Problem Statement
	2 Related Work
	2.1 2015 or Earlier
	2.2 2017
	2.3 2018
	2.4 2019
	2.5 Limitations of Existing MQTT Fuzzers

	3 Proposed Research
	4 Methodology and Evaluation Plans
	4.1 RQ1: How efficient are existing fuzzing frameworks for MQTT?
	4.2 RQ2: How efficient are program-aware fuzzing techniques for MQTT?
	4.3 RQ3: What are the characteristics of MQTT vulnerabilities that are revealed by means of fuzz testing?

	5 Conclusions
	Acknowledgments
	References

