Refining Network Intents for Self-Driving Networks

Arthur Selle Jacobs¹

Ricardo José Pfitscher¹, Ronaldo Alves Ferreira², Lisandro Zambenedetti Granville¹

¹UFRGS ²UFMS

Self-Driving Networks

High-level Architecture

Self-Driving Networks

High-level Architecture

Nowadays...

Nowadays...

Nowadays...

How to deploy intents expressed in natural language?

A Network Intent Refinement using *Nile*

A Network Intent Refinement using *Nile*

1. Receive intents expressed in natural language

A Network Intent Refinement using *Nile*

- 1. Receive intents expressed in natural language
- 2. Use *Nile* to ask for operator feedback

Experimental Service Chaining scenario, using SONATA-NFV and Mininet

"Please add a firewall and an IDS from Iperf client to server"

Original Intent

"Please add a firewall and an IDS from Iperf client to server"

Original Intent

"Please add a firewall and an IDS from Iperf client to server"

Original Intent

"Please add a firewall and an IDS from Iperf client to server"

Client Google Entities Extractor Client

Extracted entities

"Please add a firewall and an IDS from Iperf client to server"

Extracted entities

"Please add a firewall and an IDS from Iperf client to server"

Extracted entities

Neural Sequence to Sequence learning model, using Recursive Neural Networks.


```
define intent testIntent:
    from endpoint('iperf client')
    to endpoint('iperf server')
    add middlebox('firewall'),
        middlebox('ids')
```

Nile intent

Is this what you want? define intent testIntent: from endpoint('iperf client') to endpoint('iperf server') add middlebox('firewall'), middlebox('ids') Nile intent YES NO


```
define intent testIntent:
    from endpoint('iperf client')
    to endpoint('iperf server')
    add middlebox('firewall'),
        middlebox('ids')
```

Nile intent


```
define intent testIntent:
   from endpoint('iperf client')
   to endpoint('iperf server')
   add middlebox('firewall'),
       middlebox('ids')
```

Nile intent

Nile compiler to SONATA-NFV commands


```
# deploy vnfs
vim-emu compute start -n fw <params>
vim-emu compute start -n ids <params>
# chain vnfs
vim-emu network add -b -src
iperf-c:c-eth0 -dst fw:in
vim-emu network add -b -src fw:out -dst
ids:in
vim-emu network add -b -src ids:out -dst
iperf-s:s-eth0
```

Compiled SONATA-NFV commands


```
# deploy vnfs
vim-emu compute start -n fw <params>
vim-emu compute start -n ids <params>
# chain vnfs
vim-emu network add -b -src
iperf-c:c-eth0 -dst fw:in
vim-emu network add -b -src fw:out -dst
ids:in
vim-emu network add -b -src ids:out -dst
iperf-s:s-eth0
```

Compiled SONATA-NFV commands

"Please add a firewall and an IDS from Iperf client to server"

Evaluation

- (i) The accuracy we can achieve with different sizes of training datasets, aiming to find the optimal ratio between dataset size and prediction accuracy.
- (ii) The impact of the operator feedback on the accuracy of predictions over time to determine if it improves accuracy.
 - 5 dataset sizes:
 - 100, 500, 1000, 2000, 5000 entries.
 - 20% validation split.
 - We generated the datasets automatically with random sets of entities and Nile intent pairs, combining a different number of middleboxes, endpoints, traffic matching rules, time, and QoS requirements in each intent.

Results

(i) The accuracy we can achieve with different sizes of training datasets, aiming to find the optimal ratio between dataset size and prediction accuracy.

Results

(ii) The impact of the operator feedback on the accuracy of predictions over time to determine if it improves accuracy.

Results

(ii) The impact of the operator feedback on the accuracy of predictions over time to determine if it improves accuracy.

Summary

"How to deploy network intents expressed as natural language?"

Using our refinement process + Nile

Low-level of technical knowledge required

Feedback from user allows to learn over time

"What's next?"

Fully implement Nile compilation into OpenFlow and P4 backends.

Further evaluate the end-to-end proposed solution.

Thank you!

Arthur Jacobs asjacobs@inf.ufrgs.br

github.com/NetworkIntentAssistent

